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Two-dimensional Elastic Analysis of Doubly Periodic Circular
Holes in Infinite Plane
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Two-dimensional elastic analysis of doubly periodic circular holes in an infinite plane is

given in this paper. Two cases of loading, remote tension and remote shear, are considered. A

rectangular cell is cut from the infinite plane. In both cases, the boundary value problem can be
reduced to a complex mixed one. It is found that the eigenfunction expansion variational method
is efficient to solve the problem. Based on the deformation response under certain loading, the
notched medium could be modeled by an orthotropic medium without holes. Elastic properties

for the equivalent orthotropic medium are investigated, and the stress concentration along the

hole contour is studied. Finally, numerical examples and results are given.
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1. Introduction

Notch problems were considered by many
investigators. Methods for solving the problems
were proposed and many interesting results were
collected (Neuber, 1946; Savin, 1961; Lekhnitsky,
1963; Sih, 1978). For the plane problem case, the
previous investigations were limited to the cases
where several notches were involved in an infinite
plate. For example, the interaction of two circular
holes was studied by using the Airy’s stress func-
tion in the bipolar coordinates (Savin, 1961).
Stress analysis in a strip with two equal circular
holes under tension was carried out by a series
presentation of Airy’s stress function (Atsumi,
1956). Also, the body force method and
conformal mapping technique were developed to
study the notch problem (Sih, 1978). An iterative
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method based on the Airy’s stress function was
used to -solve a multiple circular hole problem
(Ting et al., 1999). All those investigations are
limited to the stress concentration problem for the
relevant cases.

Recently, the stress analysis for arrays of arbi-
trarily located holes and cracks has been
conducted (Hu et al., 1993). Elastic interactions
between elliptic holes were investigated (Tsukrov
et al., 1997). The just mentioned investigation
mainly depends on the fundamental solution, for
example, a solution of an elliptical hole with a
concentrated force applied on the hole contour in
an infinite plate. Clearly, it is not easy to use the
mentioned method to the present case, ie. the
doubly periodic holes case.

The two-dimensional elastic analysis for dou-
bly periodic circular holes in an infinite plate was
performed using the complex variable function
method (Fil'stinsky, 1964). In the paper, the
complex potentials were expressed by elliptical
functions. The solution was derived from a solu-
tion of an algebraic equation with infinite
unknowns. No description for truncating the
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number of infinite unknowns was reported.

In this paper, the problem for two-dimensional
analysis of doubly periodic circular holes in an
infinite plane is investigated by using a quite
different method. A cell element is cut from the
infinite plate with the doubly periodic circular
holes. The problem is reduced to a complex mixed
boundary value problem of the cell element. Fur-
thermore, the eigenfunction expansion variational
method (EEVM) is developed to solve the prob-
lem (Chen, 1983). In fact, the EEVM belongs to
a type of Trefftz method. In the method, the
solution satisfies the governing equation of
elasticity and a part of the boundary conditions.
In this paper, the elastic response for the problem
is studied in more detail. For example, equiva-
lence of the mentioned structure to an orthotropic
plate without holes is studied.

Two cases of loading, remote tension and
shear, are considered. In both cases, the boundary
value problems can be reduced to complex mixed
ones. It is found that the EEVM is efficient to
solve the problems. The problems are solved by
analyzing a rectangular cell with a hole cut from
the infinite plate. After the boundary value
problems are solved, the average stresses and
strains are also evaluated. Furthermore, from the
obtained results the notched mediums are made to
be equivalent to orthotropic mediums without
holes. The elastic properties for the equivalent
orthotropic mediums are investigated, and the
stress concentration along the hole contour is also
studied. Finally, numerical examples and results
are given.

2. Analysis

2.1 The eigenfunction expansion variational
method (EEVM)

A finite plate with a circular hole is considered

for the formulation (Fig. 1(a)). The assumed
boundary conditions are

o:;m;=0 (on the circular boundary Cgz) (la)
o:;m;=p: (on the outer boundary Cp) (1b)
u:=1u; (on the outer boundary Cy) (1c)

where ¢;; denotes the stress components, #; the

direction cosines, and p; the given tractions on the
boundary Cp. Also, u; denotes the displacement
components, and %; the given displacements on
the boundary Cy.

Suppose that there is a two-dimensional field
with the displacements ;, strains e;; and stresses
0i, and that they satisfy all the governing
equations of plane elasticity. In the case, the
following functional can be defined (Hu, 1995;
Washizu, 1975)

HZ[LE(&J‘) a’Z—fcpﬁiuia’S

(2)
“/{; O'ijnj(ui—l_li) dsS

where E(e;;) is a strain energy density function,
and X is the region occupied by a body (Fig. I
(a)). The statement of the variational method is
as follows. The actual solution of elasticity can be
obtained from the stationary value condition of
the functional []. Note that, in the present case
the Clapeyron’s theorem takes the form

//E(e,-j) dA‘—‘é‘ Oiinsu:dS (3)
xz Cp+Cu
Substituting Eq. (3) into Eq. (2) yields
H=—;—ﬁpdunjuid5—%/Cud.-mjuids
—-/;Pﬁiu,-dS +/;u6unj12id8

In Egs. (2) and (4), all the physical
components %: €:; and 0 are defined in the
notched region 2] (Fig. 1(a)).

An elasticity solution with the components of
displacements #; and stresses 0;; is introduced as
follows

(4)

o M
6ﬁ=)‘2_!1 X%, ui=£21 Xerel® (5)

where X, is the undetermined coefficients. As-
sume that each term in Eq. (5) satisfies (a) all the
governing equations of plane elasticity and (b)
the boundary condition, Eq. (1a). In the case, the
stress and displacement fields defined by Eq. (5)
are called the eigenfunction expansion form
hereafter. Substituting Eq. (5) into Eq. (4) and
letting

o, M) (6
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Fig. 1 (a) a finite plate with a circular hole, (b) the loading condition for the doubly periodic hole problem,

(c) the boundary condition for the tension loading case, (d) the boundary condition for the shear
loading case

the linear algebraic equations for unknowns X B,= f Faui™dS
m— (1241
(m=1, 2, ---, M) are obtained as follows co

(9)
—fc o™ niiidS (m=1,2, -, M)

M
kglAkak:Bm (m:l, 21 -“7 M) (7)
For convenience , it is preferable to write Egs.
where (8) and (9) in alternative forms,
Am=Aw= [ 09 nui"dS An= A= [ 170 ndS

(8)

(8a)
—/;dfj('"’n,-ui“"dS (m, kzl, 2, ey M) +'/; (——0;,-"")njui“") dS (m, kzl, 2, Ty M>
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Brn:/ ﬁiui(m)ds
Cp (92.)
+./c (=0 ™nis) dS (m=1,2, -, M)

From Eq. {8a) the following rules can be seen
for the composition of the integrands in Ans:

(a) If the integration is performed along the
boundary Cj, the integrand is the m~-th displace-
ment multiplied by the k-th traction in the
expansion form. If the condition is the Cp type,
the superscript “k&” always follows the traction
component.

(b) If the integration is performed along the
boundary C,, the integrand is the m~th traction
multiplied by the k-th displacement and by (-1).
If the condition is the Cy type, the superscript “£&”
always follows the displacement component.

The complex mixed boundary condition is
defined such that on the same boundary one
traction component is given and one displacement
component is also given beforehand. In the com-
plex mixed boundary condition, we simply de-
compose one integral in Ame into two integrals.
Among them, one belongs to the given boundary
traction type (C,), and the other belongs to the
given displacement type (Cu). The detail will be
presented in concrete examples.

Similar description can be carried out for Bn
values in the complex mixed boundary condition.

In the derivation the undetermined coefficients
Xn (m=1, 2, -, M) are obtained from the
variational principle. Therefore, the method is
called the eigenfunction expansion variational
method (EEVM) in this paper (Chen, 1983).

The stresses {Ox, Oy, Oxy), the resultant forces
(X, Y) and the displacements (#%, v) are ex-
pressed in terms of two complex potentials ¢(z)
and ¢ (2) such that (Muskhelishvili, 1953)

Ox+oy=4Re¢’ (2)

Oy— 0y +2i05=2[2¢" (2) + ¥ (2)] (10)
f=—Y+iX=¢(2) +2¢ (2 +¥(z) (11)
2G(utivy=rp(2) —z¢' (2) — ¥ (20 (12)

where G is the shear modulus of -elasticity,
k=(3—v)/(1+v) for the plane stress problem,
which is assumed in this paper, and v is the
Poisson’s ratio. E(=2G(14+v)) denotes the

Young’s modulus of elasticity.
The traction free condition along the inner
circular hole may be expressed as

6(2) +28(2) +¥(2) =0, (2€Cs)  (13)

It is easy to see that the condition of vanishing
resultant force along the boundary C; is equiva-
lent to the traction free condition along the same
boundary.

From the condition Eq. (13) and the fact that
2Z2=PR?*(2& Cg), it is easy to obtain the following
complex potentials

¢(2) =ax2",
¥ (2) =—auR%*z7* (14)
—kaxR*z*72, (k==%x1, £2, £3, )

which always satisfies the condition Eq. (1a). In
Eq. (14), ax is a constant. Let each term in Eq.
(5) be derived from the complex potential shown
by Eq. (14). The following term (letting k=1
and @;=7 in Eq. (14))

¢(2) =iz, ¥(2)=0 (15)

should be excluded from the expansion form,
simply because it corresponds to a rotation of the
body.

2.2 Normal loading case

In the following analysis, an infinite plate with
doubly periodic holes is shown in Fig. 1(b), and
the plane stress state is assumed. The elastic
constants are denoted by v, Go and Eo(Ee=2Gy
(1-+20)), and 10=0.3 is used. We first study the
case where the remote tensions are 0.=0 and
oy=p (Fig. 1(c)). It is convenient to cut a rec-
tangular cell with a hole from the infinite plate
(Fig. 1(c)). Clearly, the boundary conditions can
be written as

=p=20,, =0 (—bSx<h, y=2})

v (16a)
u=u=x*u, 0o=0 (x=%b, —h<y<h)

(16b)

In Eq. (16a, b), v, and #s are two undeter-
mined values determined by

foboy(x, h) dx=bp (17)
[ox(b. v dy=0 (18)

Clearly, the boundary value conditions Egs.
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(16a) and (16b) are complex mixed ones.

Since the symmetric condition exists in the
present case, it is suitable to take the terms in the
expansion form Eq. {5) by letting £=2x+1! and
a»=1 in Eq. (14) which becomes

#(2) =7
§(2) =— Rintg-ensd
~(nt1) B2 (19)

(n="M1, “M1‘+'1, ““‘1, 0, l, Yy ML"I)

In Eq. (19) Mi=M/2(M is an even number).
Equation (7) is used in the present case to evalu-
ate the undetermined coefficients in the expansion
form. However, since the mentioned boundary
conditions are complex mixed ones, the

components Anx and Bn need to be defined as
Am=[_fids+ [ fuds+ [ fudy+ [ fudy (20)
Bm=Lpg1dx+fAcu&dx+'/Bcpg3dy+_/;6ugdy (21)

where for example AC means that the integration
is performed along the line AC in Fig. 1(c). In
addition, one integral along the interval AC de-
composes into two integrals which are indicated

by fAC Pf;dx and LC ufza'x, respectively.

Since the 0xy component along the line AC is
given in Eq. (16a), from Cp, type integral in Eq.
(8a) we have fi=u™0x'®. Similarly, the dis-
placement v along the line AC is given in Eq.
(16a), from Cj type integral in Eq. (8a) we have
Fo=—0"v®_ Similarly, we can obtain fo=v'™
oo™ and fi=—0"™u'®. Substituting fi, /2, fs
and £, into Eq. (20) yields

AH:AH:/;C[GU(”“(“)_O‘y(n)l)(kl]dx
(20a)
+'£c[0nmv(”"—ox‘”’u“"]dy (m, k=1,2,~, M)

Similar derivation can be carried out for Bn
defined by Eq. (21). Since the 0x component
along the line AC is given in Eq. (16a) (6»=0),
from C, type integral in Eq. (9a) we have
2=0%*2'"=0. Similarly, the displacement v
along the line AC is given in Eq. (16a) (v=1),
from Cu type integral in Eq. (9a) we have
&=—0,"7. Similarly, we can obtain gs=0 and
g=— 0™ 1. Substituing g, &, & and g into

Eq. (21) yields

Bm= - ./;Co'y('")ﬁdx
(21a)
~ [ o ™ady (m=1,2. . M)

In Eqgs. (20a) and (21a), for example, AC
means that the integration is performed along the
line AC in Fig. 1(c). 6,'™ means the g,
component of the m-th term in the expansion
form, and ¥ is the given displacement along the
line AC shown in Eq. (16a). In fact, since the
principle of linear superposition is valid in
elasticity, we can instead solve the two boundary
value problems defined by

v=9=11, 05=0 (~b<zx<bh, y=1h) (22a)

u=u=0, 0p=0 (x=%5 —h<y<h {22b)
and

v=p=0, go=0 (—b<2x<b, y=th) (23a)

u=u=z=l1, 0o=0 (x=1b, —h<y<h) (23b)

Finally, the two unknowns %, and v, can be
determined by using Egs. (17) and (18}.

Clearly, from the deformation response in the
y-direction the notched rectangle can be modeled
globally by an orthortropic medium without
holes. It is known that the constitutive equation

of the orthtropic medium takes the form
(Lekhnitsky, 1963)
S ¢
Ex= E1 Jx Ez Oy,
1
Ey= —%f—o‘x‘}'EO'y, (24)
1
ny—“@axy

In Eq. (24), there holds a relation;
(Ez2ri2) / (Evya) =1 (25)

From the assumed loading condition and the
numerical solution mentioned above, we have
Usp Us
Ox,a0=0, Oy,av=0, 5x,av=T, ey,av=7 (26}
where the subscript “av” means that the relevant
quantity should be understood in the sense of

average on some portion of the boundary.
Substituting Eq. (26) into Eq. (24) yields
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Table 1 Normalized elastic constant f1(k/b, R/c), f2(h/b, R/c) and fa(h/b, R/c) in the doubly periodic
hole problem (see Fig. 1(c) and Eqgs. (28), (29) and (30))

filh/b, R/c)

R/c= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
h/b=0.4 9907 .9634 9203 .8634 7938 NARS! 6135 .4967
h/b=0.6 9860 9461 .8849 8079 7192 6211 5142 .3969
h/b=0.8 9815 9294 .8525 7602 6598 .5551 4477 3361
h/b=1.0 9770 9139 .8244 7224 .6168 5117 .4069 .3000
h/b=1.5 9846 9422 8815 8118 7397 6683 5981 .5286
h/b=2.0 9885 9566 9110 8586 8043 7506 6977 6452

f2(h/b, R/c)

R/c= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
h/b=0.4 .9908 9653 9288 .8868 8433 .8002 7579 7160
h/b=0.6 9862 .9480 8933 .8305 7654 .7010 6376 .5749
h/b=0.8 9816 9308 8582 7751 6892 6042 .5207 ..4381
h/b=1.0 9770 9139 .8244 7224 6168 5117 .4069 .3000
h/b=1.5 9845 .9404 8737 7911 .6976 5965 4886 3730
h/b=2.0 5883 9547 9023 .8348 7547 .6630 .5593 .4409

fH(R/b, R/c)

R/c= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
h/b=0.4 1.0102 1.0383 1.0773 1.1193 1.1574 1.1883 1.2121 1.2309
h/b==0.6 1.0154 1.0583 1.1200 1.1894 1.2568 1.3168 1.3692 1.4174
h/b=0.8 1.0206 1.0786 1.1638 1.2626 1.3620 1.4526 1.5305 [.5951
h/b=1.0 1.0257 1.0979 1.2028 1.3228 1.4401 1.5407 1.6174 1.6728
h/b=1.5 1.0171 1.0651 1.1347 1.2141 1.2927 1.3639 1.4270 1.4847
h/b=2.0 1.0128 1.0482 1.0983 1.1533 1.2050 1.2490 1.2855 1.3174

1,00 — Ez=%, Ya=— 2;‘: (27)

0.80 —

Nondimensional Young's
o
2
|

modulus
5
|

0.20 T T ¥ T T

Fig. 2 Normalized elastic constant fi(h/b, R/c),
and f2(#/b, R/c) in the doubly periodic
hole problem (see Fig. I{c) and Egs. (28)
and (29))

Similarly, we can propose the other boundary
condition, with ox=¢ and ¢,=0 at the remote
place. From the relevant solution we can evaluate
the other two elastic constants E; and 72 in a
similar way.

Clearly, the results obtained for Ez, 72, E; and
712 may not satisfy the relation Eq. (25) exactly.
In fact, in the range for 2/b and R/b (or R/h)
used in the numerical example, the ratios are
found to be (E2ri2) (Erya) =1.0000. This is to
say that the proposed assumption coincides the
physical situation very well.

In case of M =12 (M : the number of terms in
the expansion form) in Eqs (7), (8) and (9),
computation is performed. The calculated elastic
constants are expressed as

E=f(h/b, R/c)Ey (where c=min(d, &) (28)
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Table 2 Normalized tangential stress g, (4/b, R/c) and g&(k/b, R/c) in the doubly periodic hole problem

(see Fig.l(c) and Egs.(31) and (32))
a(h/b, R/c)

R/c= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
h/b=0.4 2.9664 2.8694 2.7440 2.6222 2.5311 2.4844 2.4817 25123
h/b=0.6 2.9774 2.9189 2.8489 2.7967 2.7869 2.8331 29371 3.0955
h/b=0.8 2.9896 2.9662 2.9500 2.9670 3.0424 3.1969 3.4506 3.8467
h/b=1.0 2.9991 3.0028 3.0298 3.1082 3.2782 3.6091 4.2654 5.7742
h/b=1.5 3.0049 3.0217 3.0585 3.1324 3.2800 3.5811 42233 5.7293
h/b=2.0 3.0043 3.0202 3.0564 3.1320 3.2844 3.5926 4.2367 5.7104

&(h/b, R/c)

R/c= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
h/b=0.4 —09775 —0.9115 —0.8061 —0.6669 —0.5018 —0.3215 —0.1405 0.0273
h/b=0.6 —0.9811 -—0.9238 —0.8271 —0.6897 —0.5134 —0.3088 —0.1025 0.0669
h/b=0.8 —0.9838 —0.9347 —0.8504 —0.7268 —0.5597 —0.3529 —0.1327 0.0457
h/b=1.0 —0.9830 —0.9341 —0.8571 —0.7518 —0.6097 —0.4187 —0.1858 0.0348
h/b=1.5 —0.9828 —0.9371 —0.8773 —0.8199 —0.7758 —0.7454 —0.7172 —0.6716
h/b=2.0 —0.9797 —0.9257 —0.8551 —0.7879 —0.7394 —0.7156 —0.7120 —0.7186

E,=f{(h/b, R/c)Ey {where c=min{5, i)} {(29) and F{x=0, y=R) are expressed as.
7/ Ea=112/ Ex one=g(h/b, R/c)p (where c=min(b, )} (31)
=fa(h/b, R/c) (vo/ Ev) (30) 0ue=g(h/b, R/c)p (where c=min(b, h)) (32)

(where c=min(b, %))

The calculated results for f1(k/b, R/c), f2(h/
b, R/c) and fa(h/b, R/c) are listed in Table 1
and Fig. 2.

From Table | and Fig. 2 we see that when
h/b<1.0, E\x<E: or /1</f; This result can be
explained by the following reason. For example,
if #/b=04 and R/2=04, the reduction of the
section perpendicular to the x-direction is larger
than that pérpcndicular to the y-direction, and
it is R/h=0.4. However, the reduction of the
section perpendicular to the y-direction is lower,
and it is R/b=0.16. Therefore, in case of
h/b< 1.0, the relation E;< E; must exist.

On the contrary, when 42/6>10, E1>E; or
1> f2. From Table 1 we see that the normalized
va/ E2(=fs(vo/Eo)) value is generally higher
than unity. From the theory of elasticity we know
that in the simple tension case the volume
increment is proportional to 1 —2u. Therefore, a
higher value of y21/E> means that the average
volume increment is less than the case of a solid
plate without holes.

For the remote stress, gx=0 and oy=p, the
tangential stresses at the points £ (x=R, y=0)

The calculated & (k/b, R/c). and @(k/b,
R/c) values are listed in Table 2.

For the case of a single hole in an infinite body
it is well known that g,r/p=—1.0. However, in
some extreme case of periodic holes, for example,
when %/b=1.0 and R/b=0.8, this value becomes
0.0348 (see Table 2). This result means that in
some particular case, the stress distribution
around the hole is quite different from the single
hole case.

To examine the convergent tendency, in the
condition of J;/6=1 the tangential stresses Gz
and o:r for M =8, M=10 and M =12 cases are
listed in Table 3. From Table 3 we see that in the
case of R/b=0.5, the difference for the g; values
obtained from M =8, M =10, and M =12 is less
than 0.2%.

Particularly, in case of A/b=10 and the
0-=0 and g,=p, the stress
components ¢, and o, at the point E (Fig. 1 (c))
are expressed by

Gt.Ezhl(R/b)p (33)
ore=ha(R/b) P (34)

For comparison, the results for %,(&£/b) and

remote  stress
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Table 3 Comparison results for normalized tangential stresses gi(#/b, R/c) and &(k/b, R/¢) in the doubly
periodic hole problem in the case of h/b=1.0 (see Fig.1{c) and Eqgs.(31) and (32))

&(h/b, R/c)

R/c= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08
M=8 2.9989  3.0023  3.0291 31079 32806  3.6139 42891 57736
M=10 2.9991  3.0031  3.0304 31098 32821  3.6167 42726  5.7448
M=12 2.9991 30028  3.0298  3.1082 32782  3.6091 42654 57742

&(h/b, R/c)

R/c= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
M=38 —0.9828 —0.9336 —0.8566 —07523 —0.6129 —0.4243 —0.1718  0.1985
M=10 —0.9830 —09343 —0.8577 —0.7533 —06135 —04269 —0.1980  0.0189
M=12 —0.9830 —09341 —0.8571 —0.7518 —0.6097 —04187 —0.1858  0.0348

Table 4 Normalized tangential and radial stresses 4, (R/b) and s,(R/b) in the doubly periodic hole problem

(see Fig.1(c) and Egs. (33) and (34))

R/b= 0.1 0.2 0.3
h (present) 2.9991  3.0028  3.0298
h,[9] 3.00
hz{present) 0 0 0
h(9] 0.000

04 0.5 0.6 0.7 0.8
3.1082 3.2780 3.6091 4.2654 5.7742
311 3.61 5.718

0 0 0 0 0
—0.0002 —0.0009 —0.0017

h2(R/b) from the present study and Fil'stinsky
(Fil'stinsky, 1964) are listed in Table 4 . From
Table 4 we see that coincidence of the stress
component Or between the two approaches is
pretty good. Also, in the present study, the stress
component Ore coincides with the exact solution
(or,e=0), since the traction free condition along
the circular hole is always satisfied in the present
approach. However, the stress component obta-
ined by Fil’stinsky (Fil’stinsky, 1964) has a slight
deviation from the exact solution.

2.3 Shear loading case

The response of the notched plate to shear
loading can be investigated in a similar manner
(Fig. 1(b)). In this case we assume that the
remote shear traction is Ox==7. Similar to the
previous case, the boundary conditions (Fig. 1
(d)) for the rectangular cell are

u=u=%u,, 0,=0 (—b<x<ph, y==1h) (35a)
v=0=10, 0:=0 (x=1b, —h<y<h) (35b)

In Eq. (353, b) s, and v, are two undeter-
mined values determined by

[ 0 (5, 1) dx=br (36)

fo"anw, v)dy=hr (37)

Clearly, the boundary conditions Egs. (35a)
and (35b) are complex mixed ones.

In the shear loading case, it is suitable to take
the terms in the expansion form Eq. (5) by letting
k=2n+1 and gx=7 in Eq. (14) which becomes

b(2) =i
¥ (2) =i[R*™2 @0 (2 +1) R21]
(n=-My, ~My+1, -, 1,1, -, My)

In Eq. (38) Mi=M/2 (M is an even number).
Equation (7) is used in the present case to evalu-

(38)

ate the undetermined coefficients in the expansion
form. However, the components Ame and Bn
need to be defined as

Amk=Akm=-/;c[0'y(h)U(m)—O'xy(m)u(k)] dx

+/ [0 5™ — g M 0] gy (39)
BC

(m, k=1, 2, -, M)
Bm=_ O'xy(m)l;dx

fAC (40)

— (m) = —
fBCdn vdy (m=1, 2, -, M)

The notations used in Egs. (39) and (40) are
similar to the previous case.
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Table 5 Normalized elastic constant f4(k/b, R/c) and normalized tangential stress g(k/b, R/c) in the
doubly periodic hole problem ( see Fig.1(d) and Egs. (45) and (46))

filh/b, R/c)

R/c= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
h/b=0.4 .9903 .9603 9081 .8309 7262 .5945 4411 .2800
h/b=0.6 .9855 9416 .8680 7652 6368 .4906 .3388 1965
h/b=0.8 .9807 9233 .8300 7059 .5606 .4082 .2647 .1439
h/b=1.0 9759 9049 7916 .6454 4826 .3237 .1883 .0886
h/b=1.5 .9839 9355 8552 7451 .6107 .4622 3129 1777
h/b=2.0 .9879 .9509 .8876 7967 .6787 5378 3835 2311

&{h/b, R/c)

R/c= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
h/b=0.4 4.0649 4.2667 4.6285 5.1936 6.0398 7.3140 9.3300 12.8788
h/b=0.6 4.0667 4.2740 4.6448 5.2207 6.0726 7.3281 9.2417 12.3975
h/b=0.8 4.0707 4.2911 4.6870 5.3037 6.2138 7.5370 9.4864 12.4495
h/b=1.0 4.0825 4.3416 4.8126 5.5568 6.6701 8.3071 10.7412 14.4491
h/b=1.5 4.0674 4.2772 4.6525 5.2355 6.0963 7.3578 9.2961 12.2910
h/b=2.0 4.0660 42711 4.6382 5.2094 6.0582 7.3214 9.2842 12.6553

100 4 Finally, the two unknowns u, and v, can be
: determined by using Egs. (36) and (37).
0.30 — As before, the notched infinite plate can be

5 i ] modeled by an orthortropic medium without

.g :é_' holes. From the numerical solution mentioned

E E‘m’ 7 above, the following average stress and strain are

% f.; . obtained.

Q oy .

é % o Oxy,av =T, Yxy,av =_Z;ll+—%9‘ (43)

5%

Z & 0.20 — where the subscript “av” means that the relevant
quantity should be understood in the sense of
average on some portion of the boundary.

000 A L E A Substituting Eq. (43) into Eq. (24) yields
0 0.2 04 0.6 08
R/h

Fig. 3 Normalized elastic constant f3(%/b, R/c) in
the doubly periodic hole problem (see Fig. 1
(d) and Eq. (45))

Since the principle of linear superposition is
valid in elasticity, we can solve the two boundary
value problems defined by

i
f

u
v

+1, 6y=0 (—b=sx<b, y=11) (4la)

u
v 0, 0:=0 (x==%b, —h<y<h) (41b)

and

©=0, 0y=0 (—b<x<bh, y=1h) (42a)

u
v=g==1, 0x=0 {x==%b, —h<y<h) (42b)

Go=r(Ze+22)" (44)

n b

Similarly, the calculated results can be ex-
pressed as

Ge=Fi(h/b, R/c) Ey (where ¢c=min{b, h)) (45)

The calculated results for fi(#/b, R/c) are
listed in Table 5 and shown in Fig. 3. From Table
5 we see that f4(%/b, R/c) values are always less
than unity.

Comparing Table 1 with Table 5 we see that,
generally, fi(h/b, R/c)>fi{h/b, R/c) and
fo(h/b, R/c) >fi{h/b, R/c). For example, in
case of h/b=1.0, R/b=0.5, filh/b, R/c)=
f2(h/b, R/c)=0.6168 and fi(h/b, R/c)=



664 Yi-Zhou Chen and Kang Yong Lee

0.4826. This means that the relative reduction of
the stiffness is higher in the shear loading than in
the tension loading.

In case of the remote stress do=r, the
tangential stresses at the point G(x=R//2,
y=—R/y2) (Fig. 1{d)) are expressed as

o.c=&(h/b, R/c) t (where c=min(b, h)) (46)

The calculated g (%/b, R/c) values are listed
in Table 5.

From the above analyses we see that the fol-
lowing two bodies have the same resistance with
respect to the applied loading.

(a) The isotropic plate containing holes with
elastic constants £y and Go(Ep or o).

(b) The othotropic plate without holes with
elastic constants Ei, E2, 721 andd G

As mentioned above, the elastic constants Fj,
Es, 7u and G2 depend on E, and G, as well as
the cell configuration (b, % and R).

Clearly, the mentioned equivalence for the
strain-stress relation holds only with respect to
the global deformation for the notched medium.
For the local stresses and strains of the notched
medium, one should refer to the concrete solution
obtained previously.

3. Conclusion

A remarkable advantage of wusing the
eigenfunction expansion form (EE) is that the
stress field derived from the EE is not only an
elasticity solution but also satisfies the traction
free condition along the circular boundary.

There exists a difficult point in the present
study. For example in Egs. (8) and (9), the
boundaries were defined of two kinds, namely
C. (the displacement boundary) and C, (the
traction boundary). However, in this paper, the
situation is that on the same boundary AC
(Fig. 1(c)) one condition belongs to the dis-
placement and other to the traction, which were
shown by Eqgs. (16a) and (16b). This difficulty
was overcome by the following way. For example,
in Eq. (16a) we meet the complicated mixed
boundary conditions. The first condition (y=
V=1, —b=<x<b, y==1h) belongs to the dis-

placement condition, and second condition
(6=0, —b<x<y=x=}h) belongs to the trac-
tion condition. In this case, it is simple to divide
the boundary AC in Fig. 1{c) into two part Cy
and Cp.

Furthermore, when considering the first condi-
tion on boundary AC, the type of integration on
Cy in Egs. (8) and (9) will be used. Otherwise,
when considering the second condition on
boundary AC, the type of integration on Cp in
Egs. (8) and (9) will be used. Actual computa-
tion proves that the mentioned procedure yields a
reasonable result.

Finally, since all the interested quantities such
as the stress concentration factor at the hole edge
and the effective moduli of elasticity can be
obtained from the suggested eigenfunction ex-
pansion variational method (EEVM), the EEVM
provides an effective way to solve the doubly
periodic problem.

It is found that an infinite plate with doubly
periodic holes is equivalent to an orthotropic
plate without holes with respect to their global
deformation. If the relative radius of the holes is
larger, the stress concentration factor and the
Young’s modulus of elasticity are more affected.
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