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Two-dimensional Elastic Analysis of Doubly Periodic Circular
Holes in Infinite Plane
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Two-dimensional elastic analysis of doubly periodic circular holes in an infinite plane is

given in this paper. Two cases of loading, remote tension and remote shear, are considered. A

rectangular cell is cut from the infinite plane. In both cases, the boundary value problem can be

reduced to a complex mixed one. It is found that the eigenfunction expansion variational method

is efficient to solve the problem. Based on the deformation response under certain loading, the
notched medium could be modeled by an orthotropic medium without holes. Elastic properties

for the equivalent orthotropic medium are investigated, and the stress concentration along the

hole contour is studied. Finally, numerical examples and results are given.
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1. Introduction

Notch problems were considered by many

investigators. Methods for solving the problems
were proposed and many interesting results were

collected (Neuber, 1946; Savin, 1961; Lekhnitsky,

1963; Sih, 1978). For the plane problem case, the
previous investigations were limited to the cases

where several notches were involved in an infinite

plate. For example, the interaction of two circular

holes was studied by using the Airy's stress func­
tion in the bipolar coordinates (Savin, 1961).

Stress analysis in a strip with two equal circular

holes under tension was carried out by a series

presentation of Airy's stress function (Atsumi,

1956). Also, the body force method and
conformal mapping technique were developed to

study the notch problem (Sih, 1978). An iterative
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method based on the Airy's stress function was

used to 'solve a multiple circular hole problem
(Ting et al., 1999). All those investigations are

limited to the stress concentration problem for the

relevant cases.

Recently, the stress analysis for arrays of arbi­

trarily located holes and cracks has been
conducted (Hu et al., 1993). Elastic interactions

between elliptic holes were investigated (Tsukrov
et al., 1997). The just mentioned investigation

mainly depends on the fundamental solution, for

example, a solution of an elliptical hole with a

concentrated force applied on the hole contour in

an infinite plate. Clearly, it is not easy to use the

mentioned method to the present case, i.e. the

doubly periodic holes case.
The two-dimensional elastic analysis for dou­

bly periodic circular holes in an infinite plate was
performed using the complex variable function

method (Fil'stinsky, 1964). In the paper, the

complex potentials were expressed by elliptical

functions. The solution was derived from a solu­

tion of an algebraic equation with infinite

unknowns. No description for truncating the
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where E (eij) is a strain energy density function,

and "2. is the region occupied by a body (Fig. I
(al ), The statement of the variational method is

as follows. The actual solution of elasticity can be

obtained from the stationary value condition of

the functional rr. Note that, in the present case

the Clapeyron's theorem takes the form

direction cosines, and Pi the given tractions on the

boundary Cpo Also, u, denotes the displacement

components, and Ui the given displacements on

the boundary Cu.
Suppose that there is a two-dimensional field

with the displacements us, strains eo and stresses
(Jij, and that they satisfy all the governing

equations of plane elasticity. In the case, the

following functional can be defined (Hu, 1995;

Washizu, 1975)

(4)

(2)
rr = ff:E(eij) d"2.- !cliUidS

- r (J;jnj(ui-ui) dSleu

Substituting Eq. (3) into Eq. (2) yields

rr =+lp(JijnjuidS-+!CU(JijnjuidS

- rPiuidS+ r(JijnjuidSJcP leu
In Eqs. (2) and (4), all the physical

components u.; eij and (Jij are defined in the

notched region "2. (Fig. I (a)) .

An elasticity solution with the components of

displacements u, and stresses (Jij is introduced as

follows

number of infinite unknowns was reported.

In this paper, the problem for two-dimensional

analysis of doubly periodic circular holes in an

infinite plane is investigated by using a quite

different method. A cell element is cut from the

infinite plate with the doubly periodic circular

holes. The problem is reduced to a complex mixed

boundary value problem of the cell element. Fur­

thermore, the eigenfunction expansion variational

method (EEVM) is developed to solve the prob­

lem (Chen, 1983). In fact, the EEVM belongs to

a type of Trefftz method. In the method, the

solution satisfies the governing equation of

elasticity and a part of the boundary conditions.

In this paper, the elastic response for the problem

is studied in more detail. For example, equiva­

lence of the mentioned structure to an orthotropic

plate without holes is studied.

Two cases of loading, remote tension and

shear, are considered. In both cases, the boundary

value problems can be reduced to complex mixed

ones. It "is found that the EEVM is efficient to

solve the problems. The problems are solved by

analyzing a rectangular cell with a hole cut from

the infinite plate. After the boundary value

problems are solved, the average stresses and

strains are also evaluated. Furthermore, from the

obtained results the notched mediums are made to

be equivalent to orthotropic mediums without

holes. The elastic properties for the equivalent

orthotropic mediums are investigated, and the

stress concentration along the hole contour is also

studied. Finally, numerical examples and results

are given.

2. Analysis (5)

2.1 The eigenfunction expansion variational
method (EEVM)

A finite plate with a circular hole is considered

for the formulation (Fig. I (a)). The assumed
boundary conditions are

(Jijnj=O (on the circular boundary CR) (I a)

(Jijnj=Pi (on the outer boundary Cp ) ( Ib)

Ui=Ui (on the outer boundary c,J (Lc)

where (Jij denotes the stress components, n, the

where X k is the undetermined coefficients. As­

sume that each term in Eq. (5) satisfies (a) all the

governing equations of plane elasticity and (b)

the boundary condition, Eq. (I a) . In the case, the

stress and displacement fields defined by Eq. (5)

are called the eigenfunction expansion form

hereafter. Substituting Eq. (5) into Eq. (4) and

letting

orraXm =0, (m=l, 2, ... , M) (6)
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Fig. 1 (a) a finite plate with a circular hole, (b) the loading condition for the doubly periodic hole problem,
(c) the boundary condition for the tension loading case, (d) the boundary condition for the shear
loading case

the linear algebraic equations for unknowns X m

(m= I, 2, "', M) are obtained as follows

where

Em= rPiuimldSJc.
- r a;}ml n)1idS (m=l, 2, "', M)i:

For convenience, it is preferable to write Eqs.

(8) and (9) in alternative forms,

Amk=Akm = raij(klnju/mldSi.
- r a;}mlnju;'kldS (m, k=l, 2, "', M)Jcu

(8)
Amk=Akm= ( urla;}klnjdSi.

+r (-(Jirlnju/kI) dS (m, k=l, 2. "', M)i.
(8a)
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where G is the shear modulus of elasticity,
K= (3 - u) / (1+v) for the plane stress problem,
which is assumed in this paper, and v is the
Poisson's ratio. E(=2G(1+v)) denotes the

From Eq. (Sa) the following rules can be seen
for the composition of the integrands in Am"':

(a) If the integration is performed along the
boundary C«; the integrand is the m-th displace­
ment multiplied by the k-th traction in the
expansion form. If the condition is the Cp type,
the superscript "k" always follows the traction
component.

(b) If the integration is performed along the
boundary C«; the integrand is the m-th traction
multiplied by the k-th displacement and by (-I).
If the condition is the C« type, the superscript"k"
always follows the displacement component.

The complex mixed boundary condition is
defined such that on the same boundary one
traction component is given and one displacement
component is also given beforehand. In the com­
plex mixed boundary condition, we simply de­
compose one integral in Am'" into two integrals.
Among them, one belongs to the given boundary
traction type (Cp ) , and the other belongs to the
given displacement type (Cu). The detail will be
presented in concrete examples.

Similar description can be carried out for Em
values in the complex mixed boundary condition.

In the derivation the undetermined coefficients
X m (m=l, 2, ... , M) are obtained from the
variational principle. Therefore, the method is
called the eigenfunction expansion variational
method (EEVM) in this paper (Chen, 1983).

The stresses (ax, ay, axy), the resultant forces
(X, Y) and the displacements (u, v) are ex­
pressed in terms of two complex potentials ¢ (z)
and !fr(z) such that (Muskhelishvili, 1953)

ax +ay=4Re¢' (z)
ay-ay+2iaxy=2[z¢" (a) + !fr'(z) ] (10)

f= - Y +iX=¢(z) +z¢'(z) +!fr'(z) (11)
2G(u+iv)=K¢(Z) -z¢'(z) -!fr'(z) (12)

Clearly, the boundary value conditions Eqs.

(14)

(k=± I, ±2, ±3, ... )

( 17)

(18)

fob ay(x, h) dx=bp

foh ax(b, y) dy=O

V=jj=±Vb, 11~=O (-b~x~b, y=±h) (16a)
U=U=±Ub, O'xy=O (x=±b, -h~y~h) (16b)

In Eq. (16a, b), u» and u« are two undeter-
mined values determined by

2.2 Normal loading case
In the following analysis, an infinite plate with

doubly periodic holes is shown in Fig. I (b), and
the plane stress state is assumed. The elastic
constants are denoted by Vo, Go and Eo(Eo=2Go
(1+vol), and vo=O.3 is used. We first study the
case where the remote tensions are ax=O and
ay=P (Fig. I (ci). It is convenient to cut a rec­
tangular cell with a hole from the infinite plate
(Fig. I (c)). Clearly, the boundary conditions can
be written as

which always satisfies the condition Eq. (I a). In
Eq. (14), ak is a constant. Let each term in Eq.
(5) be derived from the complex potential shown
by Eq. (14). The following term (Jetting k= I

and al=iin Eq. (14))

¢(z) =iz, Jjr(z) =0 (15)

should be excluded from the expansion form,
simply because it corresponds to a rotation of the
body.

Young's modulus of elasticity.
The traction free condition along the inner

circular hole may be expressed as

¢(z) +z¢'(z) +!fr(z) =0, (zECR) (13)

It is easy to see that the condition of vanishing
resultant force along the boundary CR is equiva­
lent to the traction free condition along the same
boundary.

From the condition Eq. (13) and the fact that
z.z=R2 (zE CR), it is easy to obtain the following
complex potentials

¢(z) =aJoZ"',
Jjr (z) = - a~2"'z-'"

- ka",R2zk
- 2,

(9a)
Em = rPiU/m)dSlcp

+ r (-l1ijm)njUi) dS (m=l, 2, "', M)i.
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In Eq. (19) M1=M/2(M is an even number).

Equation (7) is used in the present case to evalu­

ate the undetermined coefficients in the expansion

form. However, since the mentioned boundary

conditions are complex mixed ones, the

components A mk and Bm need to be defined as

(I6a) and (16b) are complex mixed ones.

Since the symmetric condition exists in the

present case, it is suitable to take the terms in the

expansion form Eq. (5) by letting k=2n + I and

ak=1 in Eq. (14) which becomes

rjJ(z) =;n+l
if/(z) =_!?'n+zz-(zn+l)

- (2ntl) Rz;n-l

(n=-M\, -Ml+l, ...-1, 0, I, "', M1-l)

(25)

(24)

(2Ia)
Bm= - L(J/m)vdx

- r (Jx(m)udy (m=l, 2, "', M)lac

In Eq. (24), there holds a relation;

(E2?'!2) / (El 721) = I

and

v=ii=±I, O'X)/=O (-b5:.x5:.b. y=±h) (22a)

u=u=O, 0'.>;)1=0 (x=±b. -h5:.y5:.h) (22b)

v=ii=O. O'X)/=O (-b5:.x5:.b, y=±h) (23a)

u=u=±I, O'X)/=O (x=±b, -h5:.y5:.h) (23b)

Finally, the two unknowns Ub and V'b can be

determined by using Eqs. (17) and (18).

Clearly, from the deformation response in the

y-direction the notched rectangle can be modeled

globally by an orthortropic medium without
holes. It is known that the constitutive equation

of the orthtropic medium takes the form

(Lekhnitsky, 1963)

_1 ..llicX-7f;(Jx- E
2

(Jy,

_ 712 1cy- - E
1

(Jx+ E
2

(Jy,

1
7xy= Gu(Jxy

Eq. (21) yields

In Eqs. (20a) and (21a), for example, AC

means that the integration is performed along the
line AC in Fig. I (c). O'y(m) means the a,
component of the m-th term in the expansion

form, and v is the given displacement along the
line AC shown in Eq. (16a). In fact, since the

principle of linear superposition is valid in

elasticity, we can instead solve the two boundary

value problems defined by

(20a)

where for example AC means that the integration

is performed along the line AC in Fig. 1(c). In

addition, one integral along the interval AC de­
composes into two integrals which are indicated

by 1 fsdx and 1 12dx, respectively.
ACp ACu

Since the (Jxy component along the line AC is

given in Eq. (16a), from Cp type integral in Eq.
(Sa) we have 11=U(ml(Jx:y(kl. Similarly, the dis­

placement v along the line AC is given in Eq.
(I6a), from Cu type integral in Eq. (8a) we have
12=-(Jy(m)v(k). Similarly, we can obtain f3=v(m)

(JxY(k) and 14=-(Jx(m)u(k). Substituting II, 12, 13

and 14 into Eq. (20) yields

A....=A...=L[l1l,)kJu(ftJ_I1,tmlv(kljdx

Similar derivation can be carried out for B m

defined by Eq. (21). Since the (Jxy component

along the line AC is given in Eq. (l6a) (O'xy=O) ,

from Cp type integral in Eq. (9a) we have
gl =O*u(m)=o. Similarly, the displacement v

along the line AC is given in Eq. (16a) (v=v),

from Cu type integral in Eq. (9a) we have
g2=-(J/m)v. Similarly, we can obtain g3=0 and

g4=-(J/m)u. Substituing gl, /52, g3 and g4 into

From the assumed loading condition and the

numerical solution mentioned above, we have

where the subscript "av" means that the relevant

quantity should be understood in the sense of

average on some portion of the boundary.
Substituting Eq. (26) into Eq. (24) yields
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Table 1 Normalized elastic constant II (h/ b. R/c), 12(h/ b, R/ c) and 13(h/ b, R/c) in the doubly periodic
hole problem (see Fig. I (c) and Eqs, (28), (29) and (30))

II (h/ b, R/c)

R/c= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
h/b=O.4 .9907 .9634 .9203 .8634 .7938 .711l .6135 .4967
h/b=0.6 .9860 .9461 .8849 .8079 .7192 .621 I .5142 ,3969
h/b=0.8 .9815 .9294 .8525 .7602 .6598 .5551 .4477 .3361
h/b= 1.0 .9770 .9139 .8244 .7224 .6168 .5117 .4069 .3000
h/b= 1.5 .9846 .9422 .8815 ,8118 .7397 ,6683 .5981 .5286
h/b=2.0 ,9885 ,9566 ,9110 ,8586 .8043 .7506 .6977 .6452

R/c=
h/b=O.4
h/b=0.6
h/b=0.8
h/b=1.0
h/b= I.5
h/b=2.0

0.1
,9908
.9862
,9816
,9770
,9845
.9883

0.2
.9653
.9480
,9308
.9139
.9404
,9547

0.3
.9288
.8933
,8582
.8244
.8737
.9023

0.4
.8868
.8305
,7751
.7224
.791 I
.8348

0.5
.8433
.7654
,6892
,6168
.6976
.7547

0.6
,8002

.7010

.6042

.51 I7
,5965

.6630

0,7
,7579
,6376

.5207

.4069
,4886
.5593

0.8
,7160
,5749

..4381
,3000
,3730
.4409

h(h/b, R/c)

R/c=
h/b=O.4
h/b=0.6
h/b=0.8
h/b= 1.0
h/b= 1.5
h/b=2.0

0.1
1.0102
1.0154
1.0206
1.0257
1.0I71
1.0128

0.2
1.0383
1.0583
1.0786
1.0979
1.0651
1.0482

0.3
1.0773
I.I2oo
I.I638
1.2028
I.I347
1.0983

0.4
I.I193
I.I894
1.2626
1.3228
1.2141
I.I533

0.5
I.I574
1.2568
1.3620
1.4401
1.2927
1.2050

0.6
I.I883
1.3168
1.4526
1.5407
1.3639
1.2490

0.7
1.2121
1.3692
1.5305
1.6174
1.4270
1.2855

0.8
1.2309
1.4174
1.595I

1.6728
1.4847
1.3174

(27)

EI=/I(h/b. R/cJEo (where c=min(b. h) (28)

Similarly, we can propose the other boundary

condition, with lJx=q and lJy=O at the remote
place. From the relevant solution we can evaluate

the other two elastic constants EI and 71z in a
similar way.

Clearly, the results obtained for Es; 7ZI, EI and
71z may not satisfy the relation Eq. (25) exactly.

In fact, in the range for hiband R/b (or RIh)
used in the numerical example, the ratios are

found to be (Ez712) (EI721) = 1.0000. This is to
say that the proposed assumption coincides the

physical situation very well.

In case of M = 12 (M: the number of terms in

the expansion form) in Eqs (7), (8) and (9),

computation is performed. The calculated elastic

constants are expressed as

I
0.8

I
0,6

ti

I
0.4

R/h

Normalized elastic constant II (h/ b. R/c),

and 12(h/ b, R/c) in the doubly periodic

hole problem (see Fig. I (c) and Eqs. (28)

and (29))
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Table 2 Normalized tangential stress gl (h/ b, R/c) and g2(h/b, R/c) in the doubly periodic hole problem
(see Fig.He) and Eqs.(31) and (32))

gl (h/ b, R/c)

R/c= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
h/b=O.4 2.9664 2.8694 2.7440 2.6222 2.5311 2.4844 2.4817 2.5123
h/b=0.6 2.9774 2.9189 2.8489 2.7967 2.7869 2.8331 2.9371 3.0955
h/b=0.8 2.9896 2.9662 2.9500 2.9670 3.0424 3.1969 3.4506 3.8467
h/b= 1.0 2.9991 3.0028 3.0298 3.1082 3.2782 3.6091 4.2654 5.7742
h/b= 1.5 3.0049 3.0217 3.0585 3.1324 3.2800 3.5811 4.2233 5.7293
h/b=2.0 3.0043 3.0202 3.0564 3.1320 3.2844 3.5926 4.2367 5.7104

g2(h/b, R/c)

R/c= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
h/b=O.4 -0.9775 -0.9115 -0.8061 -0.6669 -0.5018 -0.3215 -0.1405 0.0273
h/b=0.6 -0.9811 -0.9238 -0.8271 -0.6897 -0.5134 -0.3088 -0.1025 0.0669
h/b=0.8 -0.9838 -0.9347 -0.8504 -0.7268 -0.5597 -0.3529 -0.1327 0.0457
h/b=1.0 -0.9830 -0.9341 -0.8571 -0.7518 -0.6097 -0.4187 -0.1858 0.0348
h/b= 1.5 -0.9828 -0.9371 -0.8773 -0.8199 -0.7758 -0.7454 -0.7172 -0.6716
h/b=2.0 -0.9797 -0.9257 -0.8551 -0.7879 -0.7394 -0.7156 -0.7120 -0.7186

For comparison, the results for hi (RI b) and

and F(x=O, y=R) are expressed as

(Jt,E=gl(h/b, R/c)p (where c=min(b, h)) (31)

(Jt,E=~(h/b, R/c)p (where c=min(b, h)) (32)

The calculated gl(hlb, Ric) and ~(hlb,

RI c) values are listed in Table 2.

For the case of a single hole in an infinite body

it is well known that (Jt.F/ P= -1.0. However, in

some extreme case of periodic holes, for example,

when hib= 1.0 and RIb=0.8, this value becomes

0.0348 (see Table 2). This result means that in

some particular case, the stress distribution

around the hole is quite different from the single

hole case.

To examine the convergent tendency, in the

condition of h/b= I the tangential stresses (Jt.E
and (Jt,F for M=8, M=IO and M=12 cases are

listed in Table 3. From Table 3 we see that in the

case of RIb=0.5, the difference for the gl values

obtained from M=8, M=lO, and M=12 is less

than 0.2%.

Particularly, in case of hib= 1.0 and the

remote stress (Jx=O and (Jy=p, the stress

components (Jt and a- at the point E (Fig. I (e))

are expressed by

Ez=lz(h/b, R/c) Eo (where c=min(b, h)) (29)

"(zllEz= "(121E 1

=/3(hlb, Ric) (voIEo) (30)
(where c=min(b, h))

The calculated results for II (hi b, RIc), 12 (hi
b, RI c) and h(hlb, RI c) are listed in Table I

and Fig. 2.

From Table I and Fig. 2 we see that when

hib< 1.0, E I <E: or II <A This result can be

explained by the following reason. For example,

if hib=OA and RIh=OA, the reduction of the

section perpendicular to the x-direction is larger

than that perpendicular to the y-direction, and

it is RIh=OA. However, the reduction of the

section perpendicular to the y-direction is lower,

and it is RIb=0.16. Therefore, in case of

hi b< 1.0, the relation E I <Ez must exist.

On the contrary, when hi b> 1.0, E I >E2 or

II>12. From Table I we see that the normalized

"(211E; ( =13(VolEo)) value is generally higher

than unity. From the theory of elasticity we know

that in the simple tension case the volume

increment is proportional to 1-2vo. Therefore, a

higher value of "(ztl E« means that the average

volume increment is less than the case of a solid

plate without holes.

F or the remote stress, O'x=O and O'y= p, the

tangential stresses at the points E(x=R, y=O)

(Jt.E=hl(RI b)P
(Jr.E=hz(RI b)P

(33)

(34)
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Table 3 Comparison results for normalized tangential stresses gl (hi b, RI c) and f!2(hl b, RI c) in the doubly
periodic hole problem in the case ofh/b=I.O (see Fig.l(c) and Eqs.(3I) and (32))

gl (hi b, RI c)

Rlc=
M=8
M=lO
M=12

0.1
2.9989
2.9991
2.9991

0.2
3.0023
3.0031
3.0028

0.3
3.0291
3.0304
3.0298

0.4
3.1079
3.1098
3.1082

0.5
3.2806
3.2821
3.2782

0.6
3.6139
3.6167
3.6091

0.7
4.2891
4.2726
4.2654

0.8
5.7736
5.7448
5.7742

f!2(hlb, RIc)

Rlc= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M=8 -0.9828 -0.9336 -0.8566 -0.7523 -0.6129 -0.4243 -0.1718 0.1985

M=IO -0.9830 -0.9343 -0.8577 -0.7533 -0.6135 -0.4269 -0.1980 0.0189

M=12 -0.9830 -0.9341 -0.8571 -0.7518 -0.6097 -0.4187 -0.1858 0.0348

Table 4 Normalized tangential and radial stresses hI(RI b) and h2(RI b) in the doubly periodic hole problem
(see Fig.l (c) and Eqs. (33) and (34))

o

RIb= 0.1 0.2 0.3
h, (present) 2.9991 3.0028 3.0298
h1[9] 3.00
h2(present) 0 0
h2[9] 0.000

0.4
3.1082

3.11
o

-0.0002

0.5
3.2780

o

0.6
3.6091

3.61
o

-0.0009

0.7
4.2654

o

0.8
5.7742

5.78
o

-0.0017

(40)

(39)

(37)1h

axy(b, y) dy=hr

Clearly, the boundary conditions Eqs. (35a)
and (35b) are complex mixed ones.

In the shear loading case, it is suitable to take
the terms in the expansion form Eq. (5) by letting
k=2n+1 and a/t=i in Eq. (14) which becomes

r/J (z) = iz?n+1
'/r(z) =i[.R4n+zz-(2n+lL (2n+1)R2t n-l] (38)

(n=-Ml, -MI+I, "', -I, I, "', MI)

In Eq. (38) MI=M/2 (M is an even number).
Equation (7) is used in the present case to evalu­
ate the undetermined coefficients in the expansion
form. However, the components Am/t and B m
need to be defined as

Am/t=A/tm= L[ay(/tlv(ml_axy(m)u(/tl]dx

+ ( [a)klu(ml_o-xy(mlv(kl] dy
lBc
(m, k=I, 2, "', M)

B m= - LC1xy(mludx
- ( C1xy(mlijdy (m=l, 2, "', M)lBc

2.3 Shear loading case
The response of the notched plate to shear

loading can be investigated in a similar manner
(Fig. 1(b)). In this case we assume that the
remote shear traction is axy= t: Similar to the
previous case, the boundary conditions (Fig. 1
(d)) for the rectangular cell are

U=U=±Ub, ay=O (-bs.xs.b, y=±h) (35a)
V=ij=±Vb, ax=O (x=±b, -hs.ys.h) (35b)

In Eq. (35a, b) us, and Vb are two undeter­
mined values determined by

h2 (R I b) from the present study and Fil'stinsky
(Fil'stinsky, 1964) are listed in Table 4 . From
Table 4 we see that coincidence of the stress
component at.E between the two approaches is
pretty good. Also, in the present study, the stress
component ar.E coincides with the exact solution
(ar.E=O) , since the traction free condition along
the circular hole is always satisfied in the present
approach. However, the stress component obta­
ined by Fil'stinsky (Fil'stinsky, 1964) has a slight
deviation from the exact solution.

(36)
The notations used in Eqs, (39) and (40) are

similar to the previous case.



Two-dimensional Elastic Analysis of Doubly Periodic Circular Holes in Infinite Plane 663

Table 5 Normalized elastic constant 14 (h/ b, R/c) and normalized tangential stress g3 (h/ b, R/ c)
doubly periodic hole problem (see Fig.l(d) and Eqs. (45) and (46))

14(h/ b, R/c)

in the

R/c=
h/b=O.4
h/b=0.6
h/b=0.8
h/b=I.O
h/b=1.5
h/b=2.0

0.1
.9903
.9855
.9807
.9759
.9839
.9879

0.2
.9603
.9416
.9233
.9049
.9355
.9509

0.3
.9081
.8680
.8300
.7916
.8552
.8876

0.4
.8309
.7652
.7059
.6454
.7451
.7967

0.5
.7262
.6368
.5606
.4826
.6107
.6787

0.6
.5945
.4906
.4082
.3237
.4622
.5378

0.7
.4411
.3388
.2647
.1883
.3129
.3835

0.8
.2800
.1965
.1439
.0886
.1777
.2311

g3(h/ b, R/c)

R/c=
h/b=O.4
h/b=0.6
h/b=0.8
h/b=I.O
h/b=1.5
h/b=2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
4.0649 4.2667 4.6285 5.1936 6.0398 7.3140 9.3300 12.8788
4.0667 4.2740 4.6448 5.2207 6.0726 7.3281 9.2417 12.3975
4.0707 4.2911 4.6870 5.3037 6.2138 7.5370 9.4864 12.4495
4.0825 4.3416 4.8126 5.5568 6.6701 8.3071 10.7412 14.4491
4.0674 4.2772 4.6525 5.2355 6.0963 7.3578 9.2961 12.2910
4.0660 4.2711 4.6382 5.2094 6.0582 7.3214 9.2842 12.6553

0.00 -f--..,..--,------,--.---,---,--,------,

(43)

(44)

where the subscript "av" means that the relevant

quantity should be understood in the sense of

average on some portion of the boundary.

Substituting Eq. (43) into Eq. (24) yields

(
Ub Vb )-1

G12= r T+T

Finally, the two unknowns u« and Vb can be

determined by using Eqs. (36) and (37).
As before, the notched infinite plate can be

modeled by an orthortropic medium without

holes. From the numerical solution mentioned

above, the following average stress and strain are

obtained.

Similarly, the calculated results can be ex­

pressed as

GI2=!4(h/b, R/d& (where c=min(b, h)) (45)

The calculated results for 14(h/ b, R/c) are

listed in Table 5 and shown in Fig. 3. From Table

5 we see that 14(h/ b, R/ c) values are always less

than unity.

Comparing Table I with Table 5 we see that,

generally, 11(h/b, R/c) >/4(h/b, R/c) and

12(h/b, Rlc) >/4(h/b, Rt c), For example, in

case of h/ b= 1.0, R/b=0.5, /1 (h/ b, R/c) =

f2(h/b, R/c) =0.6168 and 14(h/b, R/c)=

0.80.6

hIb=OA

0.2o

1.00

u=u=O, O"y=O (-b5:.x5:.b, y=±h) (42a)

v=iJ=±I, O"x=O (x=±b, -h5:.y5:.h) (42b)

u=u=±l, O"y=O (-b5:.x5:.b, y=±h) (4Ia)

v=iJ=O, O"x=O (x=±b, -h5:.y5:.h) (4Ib)

and

0.4

Rih

Fig.3 Normalized elastic constant 14(h/ b, R/c) in
the doubly periodic hole problem (see Fig. 1
(d) and Eq. (45))

Since the principle of linear superposition is

valid in elasticity, we can solve the two boundary

value problems defined by

0.80
to:

; ;>,

~'E
~ ·~0.60

§-o
.~ '0
E;g 0.40

:;;=
=-0o 0
Z E

0.20
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0.4826. This means that the relative reduction of
the stiffness is higher in the shear loading than in
the tension loading.

In case of the remote stress axY= t, the

tangential stresses at the point G(x=R/./2,
y= - R/.(2) (Fig. I (d)) are expressed as

(Jt.G=~(h/b, Ric) r (where c=min(b, h)) (46)

The calculated g,,(h/ b, R/c) values are listed
in Table 5.

From the above analyses we see that the fol­
lowing two bodies have the same resistance with
respect to the applied loading.

(a) The isotropic plate containing holes with
elastic constants Eo and Go (Eo or vo).

(b) The othotropic plate without holes with

elastic constants E1, E2, Y21 andd G12.
As mentioned above, the elastic constants E1,

E2, Y21 and G12 depend on Eo and Go as well as
the cell configuration ib, hand R).

Clearly, the mentioned equivalence for the
strain-stress relation holds only with respect to
the global deformation for the notched medium.
F or the local stresses and strains of the notched
medium, one should refer to the concrete solution
obtained previously.

3. Conclusion

A remarkable advantage of using the
eigenfunction expansion form (EE) is that the
stress field derived from the EE is not only an
elasticity solution but also satisfies the traction
free condition along the circular boundary.

There exists a difficult point in the present
study. For example in Eqs. (8) and (9), the

boundaries were defined of two kinds, namely
Cu (the displacement boundary) and Cp (the
traction boundary). However, in this paper, the
situation is that on the same boundary AC
(Fig. 1(cl ) one condition belongs to the dis­
placement and other to the traction, which were
shown by Eqs. (Lea) and (l6b). This difficulty
was overcome by the following way. For example,
in Eq. (l6a) we meet the complicated mixed
boundary conditions. The first condition (v =
£j=Vb, -bs"xs"b, y=±h) belongs to the dis-

placement condition, and second condition
(axY=O, -bs"xs"y=±h) belongs to the trac­
tion condition. In this case, it is simple to divide
the boundary AC in Fig. I (c) into two part C«
and Cs.

Furthermore, when considering the first condi­
tion on boundary AC, the type of integration on
Cu in Eqs. (8) and (9) will be used. Otherwise,
when considering the second condition on
boundary AC, the type of integration on Cp in
Eqs. (8) and (9) will be used. Actual computa­

tion proves thatthe mentioned procedure yields a
reasonable result.

Finally, since all the interested quantities such

as the stress concentration factor at the hole edge
and the effective moduli of elasticity can be
obtained from the suggested eigenfunction ex­
pansion variational method (EEVM), the EEVM

provides an effective way to solve the doubly
periodic problem.

It is found that an infinite plate with doubly

periodic holes is equivalent to an orthotropic
plate without holes with respect to their global
deformation. If the relative radius of the holes is
larger, the stress concentration factor and the
Young's modulus of elasticity are more affected.
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